07-02 Simple Harmonic Motion Lab

Objective:

- Find the spring constant
- Measure and calculate the period of oscillation

Materials:

- Spring
- Mass set (enough to stretch the spring)
- Stand to hang spring on
- Stopwatch
- Ruler
- Meterstick

Procedure:

Recall that in lab 02-04 you learned that springs have a linear relationship between force and distance stretched.
 a. Complete the table by hanging the masses from the spring and measuring the length of the spring.

	-				
Mass	50 g	70 g	90 g	110 g	130 g
Weight (N)					
Length (m)					

- b. Graph the points and find the best fitting line. (Use a calculator or Vernier Graphical Analysis app)
- c. The equation is $F = k\Delta x$, so the slope is the spring constant, k.k = _____
- 2. Amplitude and the period of oscillation for the spring.
 - a. Reattach the 70-g weight to the spring. Gently pull the weight down and release letting it bounce up and down. Measure the time it takes for 10 complete bounces. Repeat 3 times each with a different amplitude.
 - i. $T_1 =$ _____
 - ii. *T*₂ = _____
 - iii. *T*₃ = _____
 - b. Does it appear the amplitude has a large effect on the period of oscillation? Explain. _____
- 3. Find the period of oscillation for the spring.
 - a. Gently pull the 70-g weight down and release letting it bounce up and down. Measure the time it takes for 10 complete bounces. Repeat 3 times and take the average.
 - i. $T_1 = _$
 - ii. *T*₂ = _____
 - iii. *T*₃ = _____
 - iv. *T*_{Ave} = _____
 - b. Divide by 10 to find the time for one complete bounce. This is the experimental period. *T* = _____
 - c. The book suggests that $T = 2\pi \sqrt{\frac{m}{k}}$. Calculate this period. This is the theoretical period. T =
 - Find the percent error with your experiment (an error of less than 5% is desirable).
 %error = _____

$$\% \ error = \frac{|experimental - theoretical|}{theoretical} \times 100\%$$

e. What are some sources of error for your experiment?

Name: __